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Abstract 

Ordinary arrows or needles are represented mathematically by vectors. Observations on such objects may therefore be 

treated using a vector space framework. An example is given where rotating needles impinge on a wire grid and 

where the measurement result is analyzed using state vectors in a two-dimensional complex vector state space where 

the usual quantum rules apply. It is argued that Bell's inequality tests concern only classical analogies where the 

measurement result characterizes univocally the state of the system. Deeper investigation on the interaction and 

spinning modes of arrows suggest other analogies with the properties of the fundamental particles. 
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1. Introduction 

What exactly does a measurement result learn us about an object? Addressing this question, Bell suggests that “when 

it is said that something is ‘measured’ it is difficult not to think of the result as referring to some pre-existing property 

of the object in question”[1]. However, as he further points out, obtaining a measurement result involves the object 

(system) and the apparatus, in agreement with Bohr’s interpretation. It would therefore be more appropriate to say 

that the result refers to a contextual property of the object-apparatus interaction, as opposed to some pre-existing 

property attached solely to the object. For example, in the case of a position measurement, the result refers to the 

location of the point of interaction, which realistically rarely coincides with the mathematical location of the object, 

unless the object is classically reduced to a point. There is an intrinsic indeterminacy in the result of elementary 

position observations, due to the geometrical extent of objects. In a classical scheme, one completes the measurement 

by some calculations including results from other observations (mass, contour, density of the object), in order to yield 

a presentable result, say the location of the center of gravity, which then stands for the exact location of the object.  
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In the conceptual development of Quantum Mechanics, the classical assumption that the exact value of physical 

properties may in principle be obtained by measurement is generally taken for granted. The following quotes of 

founding texts illustrate this: “There is no shortage of such experiments, which in principle even allow one to 

determine the position of the electron with arbitrary accuracy” [2]. “If the dynamical system is in an eigenstate of a 

real dynamical variable ξ belonging to the eigenvalue ξ’, then a measurement of ξ will certainly give as result the 

number ξ’ ” [3]. And EPR referring to the wavefunction equation of a particle in a state of definite momentum: “A 

definite value of the coordinate, for a particle in the state given by Eq. (2), is thus not predictable, but may be 

obtained only by a direct measurement.” [4]. However reasonable this assumption may be in a classical scheme, a 

realistic scheme allows a broader view on the question. If an elementary particle has geometrical extent, which seems 

to be a realistic hypothesis as regard to common experience, measured location refers to the interaction location, 

which has an indetermination proportional to the extent of the elementary particle. 

 

This viewpoint developed in the following sections leads to an alternative view on the domain of applicability of 

quantum mechanics. Section 2 presents an experimental situation with ordinary objects that may be treated quantum 

mechanically. Section 3 questions the relevance of such an analogy with respect to Bell’s inequality test. Section 4 

briefly suggests an extension of the investigational field on the hand of the general motion of ordinary needles or 

arrows, before concluding in section 5 that the interpretation of quantum physics may gain clarity if quantum 

analogies with ordinary objects are further developed. 

 

2. Naive quantum analogy 

A quantum vector space scheme emerges quite naturally if one assumes that elementary particles have one-

dimensional geometrical extent. Such particles may be represented mathematically as oriented rectilinear segments, 

i.e. vectors. Spaces in which vectors evolve are by definition vector spaces. Which set of vectors is chosen as 

spanning basis for its structuration is a matter of convenience and depends on the context. As an illustration, let us 

describe quantum mechanically the physics of one-dimensional identical rectilinear (macroscopic) objects, say thin 

needles, on which we perform a specific two-valued observation. We shoot them with velocity v in the horizontal z-

direction towards a wire grid, whose infinite parallel thin wires, oriented along the vertical x-direction, are regularly 

interspaced by a distance equal to the length of the needles, which we take as our unity, cf. Fig. 1. We let the shooting 

device at z=0 impart the needles with a plane rotational spinning motion whose normal angular velocity vector ω is 
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orthogonal to v, with v >> ω. Let tg denote the instant that the needle reaches the grids plane. We finally define the 

specific observable P to take the value 1 if the needle crosses the grid without affecting it, 0 if the needle collides with 

a wire. 

 

Quantum mechanically, it is convenient to make each basis vector correspond to a definite value of the observable. If 

the needle is spinning in the x-z plane and because the needle and the wires are supposed to be idealistically thin, the 

needle will never collide with the wires and the observable P will always yield the eventuality 1. A needle spinning in 

the y-z plane and that reaches the grid plane, while oriented along the y-direction, yields always the eventuality 0. If 

the needle reaches the wire grid in another configuration, the value of the observable is either 0 or 1. With θ the angle 

between the needle’s rotational plane and the x-z plane and ϕ the angle between the z-axis and the needle’s direction, 

the probability that the needle collides with a wire (P=0) is equal to the projection of the needle on the y-axis, when it 

intersects the grid. The length of this projection is given by sinθ sinϕ. The probability for P=1 is then given by 1 - 

sinθ sinϕ. Let now the orientation of the needle be steered by a pilot wave in such a way that the condition θ =ϕ 

always holds at the grid’s plane. Because of this pilot wave constraint, this specific experiment becomes an analogy 

of a polarization measurement of photons, with Prob(P=1) = cos²θ and Prob(P=0) = sin²θ in conformity with Malus’ 

law. 

 

The two states with definite value then suggest a two-dimensional vector state space, with spanning vectors: 

- the state vector |1> = (1 0) representing the needle spinning in the x-z plane (which we denote as an x-polarized 

needle), corresponding to a definite value P=1, 

- the state vector |0> = (0 1) representing the y-polarized needle, corresponding to a definite value P=0. 

The usual quantum rules then apply to the vector space with basis vectors |1> and |0>. 

 

If |1> corresponds to the x-polarized needle arriving at the grid’s plane with ϕ=0, the same vector rotated by γ=ω(tg-t) 

in the polarization plane corresponds to the needle at an instant t<tg. This phase change is represented by the 

multiplication of the state vector by the complex scalar exp(iγ). With respect to the considered two-valued 

observation the state vector exp(iγ)|1> then of course represents the same state as |1>. 
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The linear combination of two basis states results in another state provided that it remains normalized to unity. For 

example, the needle rotating in the polarization plane of angle θ with the x-z plane is described by the state vector |θ>: 

 

( ) 20sin1cos θθθ += i         (1) 

 

The factor exp(iπ/2) is necessary to adjust the phase of the basis vector |1> in order to yield a linear polarization for 

|θ>. The combination means that a needle in the intermediate state |θ> has some chance that the polarization 

measurement results in the eventuality 1 and some chance that it results in the eventuality 0. Probabilities for the 

chances are obtained by taking the absolute value of the squared complex scalar coefficient of the corresponding basis 

vector (the amplitude). The probability that |θ> is observed in state |1> could also be written <θ|1><1|θ> where 

<ψ|ϕ> denotes the scalar product defined over the vector space. <ψ|ϕ> yields always a complex scalar aexp(iγ), with 

a and γ real, where γ measures the phase difference for |ϕ> projected onto |ψ> and where a is the product of the 

length of |ψ> and the length of the projection of |ϕ> on |ψ>. <ϕ|ψ> then stands for the complex conjugate aexp(-iγ). 

 

The phase change of the state vector corresponding to the needle rotating with angular velocity ω is expressed by the 

factor exp(iωΔt) multiplying the state vector, giving therefore the following equation: 

 

|Ψ(t+Δt)> = exp(iωΔt) |Ψ(t)>.        (2) 

 

At the limit Δt 0, the vector difference between  |Ψ(t+Δt)> and |Ψ(t)>, when represented in real space, has length 

ωΔt (|Ψ> is normalized to unity) and is perpendicular to |Ψ(t)>, corresponding to a phase change of π/2, i.e. 

multiplication by the factor i, giving the differential equation: 

 

d|Ψ(t)>/dt = iω |Ψ(t)>.         (3) 

 

It is possible to reproduce the behavior of a photon crossing successive polaroid sheets whose optical axes are at an 

angle different from zero: when the wire grid is completed by a mechanism that stops the colliding needles and rotates 

the initial polarization plane into the analyzing plane (the x-z plane of the example) for those needles that cross the 
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grid. In that case, the operation of observing the polarization direction of the needle projects the state vector |θ> onto 

the state vector |1> if the needle crosses the wire grid, onto the state vector |0> if the needle is stopped by the wire 

grid. A transition occurs from the intermediate state |θ> to one of the two definite valued states, when one performs 

this specific observation. 

 

The presented analogy has imperfections. Firstly, the wires of the wire grid hardly represent the complexity of a 

molecular wire grid polarizer. Secondly, wire grid polarizers, like polyvinyl alcohol sheets, absorb electromagnetic 

radiation polarized parallelly to the wires, whereas in the analogy needles polarized perpendicularly to the wires are 

stopped. Thirdly, the analogy needs a complicated tensor pilot wave in order to implement the constraint θ =ϕ at the 

grid’s plane. The steering value of the wave field at one point depends on the direction of the needle at that point. 

Through a more sophisticated treatment where the pilot wave also steers the phase of the basic constituents of the 

wire, there are possibilities to have it depend only of the coordinates at that point. This would however go beyond the 

scope of this paper, which intention is only to show that observations on macroscopic entities may be treated quantum 

mechanically. 

 

3. Correlation measurements and the Bell test 

In the light of the experimental results of Bell’s inequalities tests, one could question the relevance of analogies akin 

the one presented in the preceding section. Indeed, the quantum mechanical correlation predictions for entangled 

systems conflict with predictions obtained via local classical deterministic models. Bell tests rule out such 

deterministic hidden variable theories, although some loopholes remain. 

 

There are two points that should be considered concerning the presented analogy. Firstly, hidden variable models, as 

characterized by Clauser and Shimony, are aimed “to reinterpret quantum mechanics in terms of a statistical account 

of an underlying hidden-variables theory in order to bring it within the general framework of classical physics” [5]. 

As shown in the introduction, this analogy adopts a non-classical framework where measurement on systems in 

orthogonal states may yield the same result. The measurement of the x-coordinate may indeed be the same for two 

systems |x1> and |x2>, provided that the interaction location with the detector is at the same point. In the example of 

section 2, the orthogonal states |1> and |0> could give the same measurement result, when the wire grid is set at an 

angle θ. 
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Secondly, Bell’s argumentation takes advantage of a particular classical feature, the perfect correlation at angle 0 or π 

which for hidden variable theories results in a kink of the correlation function at those angles [6]. This kink is  

specific to classical local hidden variable theories, and inexistent in the considered analogy. To illustrate this, we 

consider two needles that got tangled up in their spinning motion and that separate in opposite directions with 

perpendicular rotational planes. At opposite sides, we execute the wire grid measurement with wire grids set 

relatively to each other at angle θ. We denote α the angle between the wire grid W1 and the rotational plane of needle 

N1 at one side; (α+π/2) is then the angle between W1 and N2’s rotational plane. We then have the following 

probabilities: 

 

Prob(N1 passes W1) = cos²α        (4) 

 

Prob(N2 passes W2) = sin²(α+θ)        (5) 

 

The joint probability is then given by: 

 

Prob(N1 passes W1, N2 passes W2) = P(1,1) = cos²α  sin²(α+θ)     (6) 

 

If the wire grids are perpendicular and α is zero, there is perfect correlation equal to the quantum correlation and 

conflicting with Bell’s inequality. However, the needles could separate with any angle α between 0 and π relatively to 

the analyzing orientation. Sampling over all orientations gives a joint probability of detection: 
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+=+= ∫ dob     (7) 

 

This prediction fits to the raw data of Aspect’s 1982 test [7]. Similarly to the quantum mechanical predictions, (6) and 

(7) are stationary at angles 0 and π, conflicting with Bell’s assumptions for local hidden variable theories [6]. 
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4. Time evolution of arrows 

In section 2, it was mentioned that |Ψ(t+Δt)> = exp(iωΔt) |Ψ(t)>. With Ψ corresponding to the vector representing an 

arrow in real space, ω the angular spinning velocity and es the unitary vector representing the spinning axis, this 

corresponds for plane rotational motions to the solution : 

 

 Ψ(t) = Ψ(t=0) cosωt + (es × Ψ(t=0)) sinωt.       (8) 

 

However, freely rotating arrows have two rotational degrees of freedom. The rotational motion of an arrow must 

therefore be seen as the combination of two rotations: 

• a spinning rotation ωses of Ψ about a symmetry s-axis, represented by the unitary basis vector es perpendicular to 

Ψ, also called the figure axis,  

• a precession rotation ωzez of this figure axis about a fixed precession axis, which we take as the z-axis with basis 

vector ez. 

Without external forces, ωs and ωz are constant and the s-axis delimitates a circular cone, with constant opening angle 

2θ. 

 

The time dependence Ψ(t) is given by operating successively two rotations Rs(ωs) and Rz(ωz) on Ψ(t=0)=Ψ0. Using 

quaternion operators and given the initial parameters es0, Ψ0 and ez, the kinematical specification of Ψ(t) yields: 

 

Ψ(t)=(cos 1-
2
  ωzt, ez sin 1-

2
  ωzt)(cos 1-

2
  ωst, es0 sin 1-

2
  ωst) Ψ0 (cos 1-

2
  ωst, -es0 sin 1-

2
  ωst)(cos 1-

2
  ωzt, -ez sin 1-

2
  ωzt) 

 

which reduces to: 

 

Ψ(t)= cosωzt Ψs(t) + sin ωzt (ez × Ψs(t)) + 2 sin²1-
2
  ωzt (ez .Ψs(t)) ez,    (9) 

 

with Ψs(t) = Ψ0 cosωst + (es0 × Ψ0) sinωst. 
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We verify that, for θ=0 or ωz=0, the arrow is spinning in the plane normal to es0 and equation (9) reduces to (8). In the 

more general case, for given θ and precession axis, there are four possible spinning modes, depending on the sign of 

ωs and of ωz: spinning up or down and positive or negative rotation of the spinning axis about the fixed precession 

axis. Furthermore, the projection of the spinning arrow on the z-axis has a constant value ez.es0=cosθ. 

 

Coupling of both rotations with a pilot wave necessitates that they remain in phase with the pilot wave, through a 

condition: qkx/t = mωs = nωz, with q, m and n integer values and k the wavenumber of the pilot wave. Figure 2 

illustrates two of the four modes where m=1 and n=2 and where the projection of ωses on the z-axis is constantly half 

the value of ωs. In order to obtain the two other modes, one inverts ωs. 

 

Needles spinning in these modes have noteworthy properties. When the needle has spun once about the spinning axis, 

the sign of Ψ is inverted: Ψ(t=2π/ωs)= −Ψ0. It must spin twice in order to return to the original state. Two needles 

spinning in the same mode exclude each other at the same place since their identical motion causes them to collide 

when they come close. When however the two needles have opposite spins, while the precession rotations are 

oriented identically, their motions are compatible and they may spin one about the other when they are at the same 

place. Further investigation of these suggestive characteristics of spinning needles may shed light on the manner that 

particles aggregate or gain inertia. 

 

5. Conclusion 

Today there is some kind of consensus that there exist two domains where different rules apply. On the one hand, 

there is the classical domain based on familiar rules, on the other hand there is the quantum domain of molecular or 

submolecular constituents which obey rules that seem unsound with respect to classical principles. The presented 

analogy based on arrows, needles or rods, whose rotational motions are coherence with a pilot wave, suggest that the 

physics of ordinary objects may also be treated using the quantum-mechanical theoretical framework: complex vector 

state space with observation or evolution operators, superposition of states, Born’s probability rule. Experiments on 

arrows, whether real or thought experiments, are conceptually easier to handle than experiments on fundamental 

particles and help to gain insight in the interpretation of quantum physics. After all, “all we do is draw little arrows on 

a piece of paper – that’s all!”[8]. 
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Figure 1 : Experimental setup where rotating needles with length unity are impinging on a grid, whose 
wires are interspaced by the length of the needle. 
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a) ωs=2ωz 

b) ωs=-2ωz 

Figure 2 : Rotational motion of arrows, composed of a spinning motion ωs and a precession motion: a) ωz=ωs/2 and b) ωz=-ωs/2. 


